LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster.
نویسندگان
چکیده
The molecular mechanisms mediating chemosensory discrimination in insects are unknown. Using the enhancer trapping approach, we identified a new Drosophila mutant, lush, with odorant-specific defects in olfactory behavior. lush mutant flies are abnormally attracted to high concentrations of ethanol, propanol, and butanol but have normal chemosensory responses to other odorants. We show that wild-type flies have an active olfactory avoidance mechanism to prevent attraction to concentrated alcohol, and this response is defective in lush mutants. This suggests that the defective olfactory behavior associated with the lush mutation may result from a specific defect in chemoavoidance. lush mutants have a 3-kb deletion that produces a null allele of a new member of the invertebrate odorant-binding protein family, LUSH. LUSH is normally expressed exclusively in a subset of trichoid chemosensory sensilla located on the ventral-lateral surface of the third antennal segment. LUSH is secreted from nonneuronal support cells into the sensillum lymph that bathes the olfactory neurons within these sensilla. Reintroduction of a cloned wild-type copy of lush into the mutant background completely restores wild-type olfactory behavior, demonstrating that this odorant-binding protein is required in a subset of sensilla for normal chemosensory behavior to a subset of odorants. These findings provide direct evidence that odorant-binding proteins are required for normal chemosensory behavior in Drosophila and may partially determine the chemical specificity of olfactory neurons in vivo.
منابع مشابه
Drosophila OBP LUSH Is Required for Activity of Pheromone-Sensitive Neurons
Odorant binding proteins (OBPs) are extracellular proteins localized to the chemosensory systems of most terrestrial species. OBPs are expressed by nonneuronal cells and secreted into the fluid bathing olfactory neuron dendrites. Several members have been shown to interact directly with odorants, but the significance of this is not clear. We show that the Drosophila OBP lush is completely devoi...
متن کاملThe role of cVA and the Odorant binding protein Lush in social and sexual behavior in Drosophila melanogaster
Social living is beneficial because it allows conspecifics to interact in ways that increase their chances of survival and reproduction. A key mechanism underlying these benefits is the ability to recognize conspecifics; thus, allowing the production of coordinated social interactions. Identification of such individuals is often through chemical communication: the individuals’ pheromonal profil...
متن کاملLigands for Pheromone-Sensing Neurons Are Not Conformationally Activated Odorant Binding Proteins
Pheromones form an essential chemical language of intraspecific communication in many animals. How olfactory systems recognize pheromonal signals with both sensitivity and specificity is not well understood. An important in vivo paradigm for this process is the detection mechanism of the sex pheromone (Z)-11-octadecenyl acetate (cis-vaccenyl acetate [cVA]) in Drosophila melanogaster. cVA-evoked...
متن کاملFunctional dissection of Odorant binding protein genes in Drosophila melanogaster
Most organisms rely on olfaction for survival and reproduction. The olfactory system of Drosophila melanogaster is one of the best characterized chemosensory systems and serves as a prototype for understanding insect olfaction. Olfaction in Drosophila is mediated by multigene families of odorant receptors and odorant binding proteins (OBPs). Although molecular response profiles of odorant recep...
متن کاملLUSH Shapes Up for a Starring Role in Olfaction
In the fruit fly Drosophila, odorant-binding proteins are secreted into the fluid that bathes olfactory neurons. Laughlin et al. (2008) now challenge the assumption that the odorant-binding protein LUSH passively transports its pheromone to a specific olfactory receptor. Instead, LUSH undergoes a conformational change upon pheromone binding that is sufficient for neuronal activation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 150 2 شماره
صفحات -
تاریخ انتشار 1998